|
注释1:
ADP能把吸收到的能量储存为ATP。ATP是生物进行生命活动的直接来源,它在酶的作用
下分解为ADP、水和供生命活动的能量。
知识延伸:
1,ATP是腺嘌呤核苷的衍生物,分子简式为A—P~P~P,其中A代表腺苷,T代表三个,P代表磷酸基,~代表高能磷酸键。
2,ATP与ADP的这种相互转化是十分迅速的,ATP与ADP的转化中,ATP的第二个和第三
个磷酸之间的高能磷酸键对于细胞中能量的捕获、贮存和释放都是很重要的。第二个
高能磷酸键的末端,能很快地水解断裂,于是ATP转换为ADP,能量随之释放出来以用
于各项生命活动;同样,在提供能量的条件下,也容易加上第三个磷酸,使ADP又转化
为ATP。在ATP与ADP的转化过程中都需要酶的参与,活细胞内这个过程是永无休止地循
环进行的。
注意三点:
1,细胞内ATP的含量是相对稳定的;
2,ATP在细胞内的含量是极少的,如肌细胞中的ATP只能维持肌肉收缩2钞钟左右;
3,细胞内的糖类、脂类等能源物质不能被细胞直接利用,ATP的水解后释放的能量才
是细胞内各种生命活动的直接能量来源;
4,呼吸作用分解有机物释放能量不能为生物体直接利用,只有这些能量转移给ATP,
且ATP水解后释放的能量才可被细胞利用。对动物而言,产生ATP途径是是氧化磷酸化
,即呼吸作用;对植物而言,产生ATP的过程包括氧化磷酸化(呼吸作用)和光合磷酸
化(光合作用)。
注释2:
肌肉是由快肌纤维与慢肌纤维组成。两种肌纤维在运动中扮演着不同的角色。
慢肌纤维的抗疲劳能力较快肌强,故快肌纤维较慢肌纤维更易疲劳。(这可以很好地解释
了为什么有着长跑经验的人每天游三到五个小时不会感到太累)
知识延伸:
慢肌纤维在力量与爆发力方面逊色与快肌纤维,但其拥有很好的耐力。由于其含有氧气
,线粒体,肌红蛋白(肌细胞中运输氧的色素,是一种结合蛋白,与血红蛋白的一个亚单位
相似,由一条珠蛋白的多肽链和一个血红素基团组成;它与红细胞释放的氧相结合,起贮
氧作用,并将其转运至肌细胞的线粒体,,在那里,氧将葡萄糖氧化,生成二氧化碳和水)
所以颜色较深。鸟类主要由慢肌纤维组成,因此可以做长时间的飞行。
从结构上讲,快肌纤维粗大,慢肌纤维较细小。从代谢特点上讲,快肌纤维中的ATP(
三磷酸腺苷)酶和糖酵解酶含量高,肌肉运动时易产生乳酸,易疲劳;慢肌纤维中氧
化酶含量高,肌肉运动时不易产生乳酸,不易疲劳。代谢特点的差异导致这两种肌纤
维运动能力和运动特点的不同:在负重大、爆发力强的运动中,首先兴奋、疲劳的是
快肌纤维,所以快肌纤维在无氧运动时表现活跃:在负重小或耐力运动中,慢肌纤维
中的糖元消耗量大,所以慢肌纤维积极参与有氧运动,因此,慢肌纤维中线粒体含量
多,ATP水解酶活性低,糖元含量高,抗疲劳能力强。
长跑运动员以有氧呼吸供能为主,短跑运动员以ATP、磷酸肌酸供能为主.慢肌纤维与
快肌纤维相比,线粒体数目多,ATP水解酶活性低,抗疲劳能力强. 但一般认为快收缩
肌纤维内糖原含量略高于慢收缩肌纤维。
注释3:
水合反应,也叫作水化。是无机化学中指物质溶解在水里时,与水发生的化学作用。
一般指溶质分子(或离子)和水分子发生作用,形成水合分子(或水合离子)的过程
。 水合作用是指水的小分子团穿过细胞膜上的水通道蛋白进入细胞内,并与细胞内极性
分子通过氢键的相互作用,在极性分子表面形成一层水化膜,这就是使细胞吸水的过
程。正是这个过程才使得细胞得到充分的水合,从而杜绝了细胞的脱水老化现象的发
生。
知识延伸:
矿泉水是纯天然的,在地下深层循环了数千年,甚至万年以上,里面各种微量的、宏
量的(常量)矿物成分多达几十种,矿物质与水分子都是完美地成为水合离子态的,而
且非常平衡和稳定。
微量元素和矿物质在人体体液中与水产生高效的水合作用后可快速进入人体器官及细
胞组织内部,代谢和排除人体体液中长期积累的酸性废弃物和毒素,调节和改善人体
体液酸碱平衡。
注释4:
皮质(甾)醇就是熟知的应激激素,抑制免疫系统。肾上腺皮质素正是摧毁细胞及免疫功
能的罪魁祸首。
知识延伸:
皮质醇增多症,又称柯兴综合征,主要是由于下丘脑-垂体功能紊乱或垂体腺瘤引起
双侧肾上腺皮质增生,或肾上腺本身的肿瘤使皮质醇过量分泌所致。典型的临床症群
是皮质醇过多造成的代谢紊乱引起的,主要表现为满月脸,向心性肥胖,多血质,皮
肤紫纹,血糖、血压升高,骨质疏松,对感染抵抗力降低等,多见于成年女性。
男性与女性之比为1:2.5。通过小剂量地塞米松抑制试验及皮质醇分泌昼夜节律改变
,经过定位和病因诊断确定治疗方案,可选用手术放疗或药物治疗。
肾上腺素生理功能因现代环境压力的过度频繁,因而令人体制造出过量的肾上腺皮质
素(Cortisol),由于边缘系统也会同时接受到肾上腺皮质素的异常指令,进而伤害
脑细胞的正常动作,医学界已证实,肾上腺皮质素正是摧毁细胞及免疫功能的罪魁祸
首。 |
|