【疾病预防与控制】

冬泳对心血管系统部分参数的影响

邹裕桂 ,邹小秋 ,简 辉 ,陶 萍 ,沈兆春 ,肖 苑 ,李小红

(宜春市第二人民医院,江西 宜春 336000)

【摘要】 目的 观察冬泳对人体心血管系统部分参数的影响 ,如 :血脂、C - 反应蛋白(C - reactive protein ,CRP)、白介素 - 6(IL - 6)、心室壁厚度 ,探讨冬泳预防中老年人心血管病的机制。方法 选择宜春市冬泳协会 $40 \sim 60$ 岁冬泳爱好者 113 人 ,冬泳前及冬泳 3 个月后分别检测血脂、CRP、IL - 6、心室壁厚度。结果 :冬泳后总胆固醇(TC)下降 13.4% ,甘油三酯(TG)下降 18.3% ,低密度脂蛋白胆固醇(LDL - C)下降 16.3% ,高密度脂蛋白胆固醇(HDL - C)升高 12.1% ,CRP 下降 10.3% ,IL - 6 下降 13.4% ,冬泳前后均有显著差异(P < 0.05);而左心室壁的厚度变化不明显(P > 0.05)。结论 :冬泳可以调节血脂、降低炎症反应 对预防中老年人心血管病具有重要的意义。

【关键词】 冬泳:血脂:C-反应蛋白:白介素-6

[中图分类号] R161.1

[文献标识码] A

[文章编号] 0369(2006)07-0552-01

冬泳被誉为"心血管体操",可以提高人体免疫力,改善血液的黏稠度,降低心血管疾病发病率。我们观察了2004年11月~2005年5月宜春市冬泳协会爱好者冬泳前后心血管系统部分参数的变化。

1 材料与方法

- 1.1 研究对象 入选标准 $40 \sim 60$ 岁冬泳爱好者,排外有明确高血压、冠心病、糖尿病患者,选择宜春市冬泳协会冬泳爱好者 113 人,男 102 例,平均年龄(47 ± 5.2)岁,体重指数(BMI)27.13 ± 1.08;女 12 例,平均年龄(42 ± 3.5)岁,BMI 24.23 ± 0.96 。冬泳方法:根据户外温度 > 10℃游泳 $10 \sim 20$ min, $\lesssim 10$ ℃($1 \sim 10$ ℃)多少度游泳多少分钟,< 1 ℃游 $1 \sim 2$ min。观察总时间为 3 个月。
- 1.2 实验方法 所有入选人员在参加冬泳前空腹 12h 后采静脉血送检 测定血清总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、均用酶法)、低密度脂蛋白胆固醇(LDL-C)、公式法)的水平。 CRP测定:应用速率散射比浊法;IL-6测定采用双抗夹心 ELISA法,试剂盒购于深圳晶美生物工程公司。心脏彩超:Apson型号美国进口彩超,所有冬泳爱好者在冬泳期间控制普通饮食。冬泳后指标检测采用同样的方法。
- 1.3 统计学方法 采用 SPSS 11.0 统计学软件分析。测定数据以均数 \pm 标准差 $(\bar{x} \pm s)$ 形式表示。

2 结果

冬泳前后血脂的变化见表 1, TC 下降 13.4% ,TG 下降 18.3% ,LDL - C 下降 16.3% ,HDL - C 升高 12.1% ,冬泳前后 差异均有显著性(t=5.65 ,7.97 ,8.78 ,10.39。 P<0.05 或 0.01)。 CRP、IL - 6 的变化见表 2, CRP 下降 12.3%(t=5.43 , P<0.05),IL - 6 下降 13.4%(t=8.87 ,P<0.01),冬泳前后 差异均有显著性。心功能改变见表 3,冬泳后均明显改善。

表 1 冬泳前后血脂的变化 $(\bar{x} \pm s)$

组别	TO(mmol/L)	TQ mmol/L)	HDL(mmol/L)	LDL - ((mmol/L)
冬泳前	5.23 ± 0.81	1.62 ± 0.32	1.32 ± 0.26	2.85 ± 0.65
冬泳后	4.64 ± 0.76	1.32 ± 0.24	1.68 ± 0.35	2.03 ± 0.53

表 2 冬泳前后 CRP、IL - 6 的变化 $(\bar{x} \pm s)$

组别	CRP(mg/L)	IL - 6(mg/L)
冬泳前	2.32 ± 0.41	56.23 ± 4.96
冬泳后	2.08 ± 0.23	51.28 ± 3.25

冬

组别	心搏量	心输出量	心脏指数	室壁厚度
\$H 701	(ml/搏)	(L/min)	($L/min.m^2$)	(mm)
冬泳前	82.10 ± 6.7	5.2 ± 1.72	3.20 ± 1.22	9.11 ± 0.21
冬泳后	90.20 ± 7.2	6.0 ± 1.23	4.02 ± 1.60	9.23 ± 0.23
t	8.75	4.02	4.33	4.10
P	< 0.01	< 0.05	< 0.05	< 0.05

3 讨论

研究证明¹¹,凡冬泳者血中高密度脂蛋白都有不同程度的升高,而低密度脂蛋白则有所降低,从而遏制了动脉粥样硬化斑块的形成。有资料表明,冬泳对预防并缓解中老年人高黏滞血症效果明显。而且冷应激可提高神经内分泌系统、免疫系统、能量转化系统以及体内抗氧化的功能。

CRP是炎症急性反应的标志物,近年研究证实,许多心脑血管病 CRP 水平升高,是冠心病发生的独立危险因子之一 $^{[2]}$ 。 $_{IL-6}$ 主要由单核 – 巨噬细胞、 $_{IL-6}$ 期份合成,可以促进肝脏合成急性期蛋白,激活 $_{IL-6}$ 对源分泌免疫球蛋白的免疫活性细胞, $_{IL-6}$ 可通过自分泌和旁分泌而作用于组织细胞,刺激细胞生长,促进细胞外基质增生,参与炎症反应等过程。因此,它既是免疫调节因子,又是炎症介质 $^{[3]}$ 。本研究发现,冬泳可以调节血脂,改善心功能,使血清中的炎症因子 CRP、 $_{IL-6}$ 明显降低。冬泳对防止动脉粥样硬化等心脑血管病的发生、发展具有重要的意义。

参考文献

- [1] 潘志军 .冬泳健身机制的研究[J].中国临床康复,2003,7(2): 290-291
- [2] 黄维周,时昭红,杜敏丽,等. C-反应蛋白临床研究进展[J]. 中国实用内科杂志,1996 A(16) 245-246.
- [3] 王钢 夏冰. 细胞因子在急性冠状动脉综合征病理演进中的临床意义[J]. 临床心血管病杂志 2004 20(2):125 127.

(收稿日期 2006 - 02 - 10)