燕鱼 发表于 2006-8-24 14:52

游泳推进力

<br><br>游泳推进力是指游泳时推动人体前进的力。游泳的推进力可划分为两种类型,即阻力推进力与升力推进力。<br>多数有关游泳技术的分析文章在叙述划臂或打腿动作过程的细节时,对应参照系是游泳者本人的身体位置。这种方式的解释观点之所以流行,缘于两方面:一是游泳者自身感受,其次是教练员或旁观者的肉眼观察。以运动学的观点和视觉感受的印象来描述动作技术的结果,导致我们忽略了处于运动状态的肢体与相对应的水环境在立体的空间中相互发生了一些什么作用?会产生什么结果?为清楚认识游泳推进力,就必须将注意的焦点集中在水是如何流经运动状态的肢体?作用于身体前进的推进力是怎样产生的?涉及推进力的流体动力学又是作如何解释的?<br>一、阻力推进力<br>    利用水具有阻力的特性和作用力与反作用力的牛顿第三定律,通过肢体向后的划水、打水或蹬水动作,对水施加作用力,水就对肢体产生一个方向相反的反作用力,从而推进身体前进。这种利用水的阻力获得的游进推进力,被称为阻力推进力。划船时的桨叶对水作用就是较为典型的阻力推进力作用。游泳中,依手臂划水动作为例,手臂沿身体纵轴从体前向身后划水,水的作用是阻挡手臂向身后划动的动作。如同外形姿态阻力对身体产生阻碍的原理一样,与水流方向相对的掌心一面产生高压区,而手背一面产生了低压区,形成了阻力(如图2-9)。要增大阻力推进力就必须增大划臂的阻力,根据外形姿态阻力的表达式,要增大手臂划水时的阻力,一要增大划水面积,二要加速划水。手臂的阻力与手臂对水的有效表面积成一次方的关系,与手臂划水的平方成正比关系。由于手臂划水所产生的阻力推进力只产生加速度,要想提高人的游进速度,阻力推进力必须持续作用一段时间。只有这样,人体所受到的阻力推进力冲量才能得以增大,为追求游进速度,加快水与手臂之间的相对速度,加大阻力推进力对手臂的冲量力值,在人体游进的同时,也就自然出现了手臂划水的线速度快于身体向前位移速度的现象。由于水是流体,水受到手臂的作用力后即按手臂运动的方向流动,或根据压力变化流向低压区,故部分动力被水流转移,从而得不到象陆地上固定支撑的效果,得不到与作用力大小相等的反作用力。因此,除增大划水面积和速度外,还需作曲线划水,以不断划到静水作补偿。但曲线的曲率不宜过大。<br>手掌在水中向身后划浆方式的划动,在水流经掌面时产生推进阻力。<br>二、升力推进力<br>游泳时,由于手或脚划水、打(蹬)水动作的方向路线不是直线,而是在一条三维曲线上运动。这样,相对人肢体流动的水不仅为人体提供了向前运动的阻力推进力,而且由此也生成了第二种力——升力推进力。升力推进力,即利用升力的原理获得推动人体向前运动的一种推进力。升力这个名词给人第一印象,它是一种向上的力。但是,在游泳时,它所起到的作用并不是总向上的。翼状物体在沿旋转轨迹运动时,可产生推动物体向前运动的水平升力。直升飞机的桨叶、船舶的螺旋桨、飞机的喷气涡轮发动机里的叶片都是依升力原理来做功的。<br>想理解流体升力是如何产生使身体向前的推动力,就必须了解肢体动作是如何与相对的水流相互作用的。当水在流经一桨叶状物体的表面时,比如流经手掌时,产生升力的因素关键在于手掌的攻角度和手臂的运动轨迹与速度。攻角,即手掌与流经手掌的水流方向所成的倾斜角,也称为迎角。当手与相对水流方向处于一合适的攻角时,水流经划动的手的掌心面与手背面的速度是不一样的。由此,手掌与手背两个面的压强就出现了差别。依伯努利原理来解释流速与压强之间的关系,当流经一物体表面的液体的流速快时,这一物体表面的压强就会降低;当液体流经一物体表面时的流速慢时,这一物体表面的压强就会升高。划水时,手在一定攻角状态下,流经手掌两面的水流速度的不同,形成手掌两面不同的压强,使得手掌面高压区的压强向手背面低压区传导,就可使手掌获得升力(图2-10)。<br>攻角的手掌与相对水流的相互作用关系<br><br>升力的形成有其限定的前提条件,即物体或生物的形状,以及这一物体或生物相对水流运动的角度和方向。比如飞机的机翼,船舶的螺旋桨;又比如海洋动物,像海龟、海豹、企鹅的前鳍,鲸、海豚的胸鳍和尾巴,淡水鱼的鳍和尾以及人的手和脚。需指出的是,升力的方向与相对水流方向的划手轨迹的位点成直角关系。由此可知,升力与阻力总是以成直角关系存在的升力方向与相对气流方向呈直角关系,从高压区指向 <br>低压区<br>如想获得最大升力,关键在于一是手掌的对水倾斜攻角的角度,二是手掌的形状与面积,三是相对于手掌的水流速度。高水平游泳者获得升力的途径是经过长期水中训练的结果,在每一划臂过程中保持最佳的手掌对水流方向的倾斜攻角,以获得对身体产生推进作用的最大升力。<br>升力表达式:FL=1/2CLAρV2<br>FL:流体动力学的升力<br>CL:手掌和前臂在划水轨迹的某一位点时的攻角升力系数<br>ρ:水的密度<br>A:手掌和前臂对水作用的单位表面积<br>V:相对水流速度<br>升力的增或减,与相对水流速度密切有关。在手掌保持一有效的攻角前提下,相对水流速度越快,获得的升力就越大。由于升力的方向与水流和阻力方向成直角的关系,所以当手臂的位置处于手指向池底横向成攻角旋转前臂向内向外转腕划动时,手臂划动所产生的升力方向就会指向身体的前方(如图2-12)。<br><br>与小臂作摇橹状拨水产生的升力推动身体向前位移<br>在手掌划水产生升力时,阻力同时也对手掌起作用(如图2-13)。在手掌相对水流的攻角增加度数过大时,经手掌的水流开始由层流状态变为紊流状态,此时阻力相应增加,而升力随流体紊乱而相应减少至消失。<br><br>三、手划水时的升力与阻力<br>由于人体肩关节与手臂的解剖关系限制原因,所以手臂划水动作所产生的力的方向不是直接指向游进方向,而是与游进方向之间有一定的夹角。有效的游泳推进力只是水对手作用力F在游进方向上的分力FZ,实际上游泳的推进力是由升力和阻力在游进方向上的分量构成的。如图2-14所示,OZ表示运动员游进方向,手掌沿V的方向划水,阻力D在游进方向分量DZ和升力L在游进方向分量LZ合成为游泳的推进力FZ。<br>游泳推进力的本质就是靠肢体动作产生的升力和阻力。为了能计算游泳运动员划水时的推进力大小,必须先测定游泳运动员的手的升阻系数。美国纽约哥伦比亚大学的Schileihauf采用水槽试验手段,用1:1的人手掌模型测定人手的升阻力系数,测定结果表明,所采集数据可以解释划水过程中升力与阻力的变化问题。他的试验是将手模型对水流的方向分成8个方位,即8个对水流方向的角度ψ(如图2-15-1),在每个对水流角度的情况下,手的攻角a从0°变化到90°(如图2-15-2)。在水槽中逐一测定各对水流方向角度下,手掌的攻角0°变化到90°时手模型的升力系数与阻力系数,测定结果如图2-15-3至图2-15-6所示。从左图曲线可见,升力系数随攻角a的增大趋向上升,中间在40°至50°之间为升力系数最大值,然后随攻角a的继续增加开始下降。右图曲线所表示的阻力系数是随攻角a的增加而加大,至攻角为90°时达到阻力系数的最高值。<br><br>决定划水过程中升力与阻力的大小的另一因素是手掌面积的大小,以及它在相对水流运动时的姿态。Remmonds和Bartlett曾对手掌的姿态和攻角作过风洞试验。试验结果发现:当手掌并拢,攻角相对气流50°时,手掌可获得的最大升力为12N。此时,手掌的大拇指与其余四指为同一方向。但大拇指与其余并拢的四指之间有一较宽的空隙。试验结果认为大拇指处于这一位置有助于调节气流,使手掌获得的稳定的升力姿态,并认为大拇指收展与否,与手掌攻角的稳定保持相关,其功能如同飞机的襟翼作用。试验证明,在手掌以相同姿态与气流方向成90°直角时阻力最大。手指之间开合变化对阻力有明显影响:手指完全并拢时,手掌的阻力为11.9N ;在手指充分展开时,阻力可增至13.4N。试验段气流速度代入雷诺数换算为水流速度2.1m/s。试验发现,当气流速度下降时,升力与阻力值均下降。试验结论证明阻力推进力与升力推进力均可使身体位移获得推进力。虽然用模型的测试与活动人体的数据不完全一样,但数据可作参考。<br>手在水下的划水动作方向由向外、向里、向下、向上、向前、向后的六个基本运动面构成,前四个运动面都在人体横截面上,后两个在人体的矢状面上。为简述手划水升力和阻力之间的关系,将手的向上、向下运动方向舍弃不作解释,那么,手的划水动作过程可简化为平面曲线的划水路线,如图2-16所示。以游进方向和人体横轴座标间的夹角来描述:当夹角为b=90°,就是直线向后的划水;b=0°就是全横向划水,b在0°—90°之间时,既有纵向又有横向的划水。所以可以看出升力和阻力共同对推进力起作用,如图2-14所示,升力L和阻力D在游进方向的分力LZ和DZ为游进推进力。<br>推进力中升阻力的比值随手的划水路线所处的三维座标的夹角b变化而变化。利用手模型升力系数CL、阻力系数CD的测定结果进行分析表明,在手处于划水攻角的姿态条件下,当0°≤b≤25°时,推进力中升力占60%以上,阻力占40%以下,处于划水路线这一瞬间时段为升力型路线时段。在25°≤b≤40°时,推进力中升力和阻力的比值成份大致在40—60%之间,这一瞬间时段的划水路线称为升阻型划水路线时段。当40°≤b≤90°时,推进力中阻力成份占60%以上,升力成份占40%以下,这一瞬间时段的划水路线称为阻力型划水路线时段。<br>实践表明,在一个划水过程的各个时段上,推进力的升阻属性的类型不是纯单一性的,图2-17为施皮茨爬泳右臂划水动作轨迹俯视图。数字表示各个间隔段的序列,1—24为入水阶段,25以后为划水。表2-3表示施皮茨划水各段升阻百分比。在整个划水过程中手也不会保持单一的手掌攻角不变。<br>表2-3    划水过程各时段的升、阻力百分比值。<br>n 25 26 27 28 29 30 31 32 33 34 35 36 37<br>L/F(%)推进力类型 76L 76L 70L 65L 60LD 60LD 42LD 0D 11D 44LD 44LD 60LD 60LD<br>n 38 39 40 41 42 43 44 45 46 47 48 49 <br>L/F(%)推进力类型 36D 16D 10D 6D 8D 46LD 60LD 70L 76L 83L 94L 94L <br>   L:升力型   LD:升阻型   D:阻力型<br><br>四、推动身体游进的肢体动作机理<br>了解肢体动作与水相互作用的机理对理解身体是如何在水中位移有直接的关系。因为游泳者是以手臂和腿脚的肢体运动与水相互作用以达到推动身体在水中前进的目的。由于手臂与腿脚在形态、关节、相对身体的解剖位置、动作的方向、幅度和功能上截然不同,所以,对它们推动身体前进的动作技术和作用分开评述。<br>

谢作明 发表于 2006-9-11 14:48

我过去从来没有看到过有关游泳的科普文章.看到这一篇我很认真的学习了几遍.游泳是我健身,自娱的一种体育活动.不但能够游,而且还学习到一些与之相关联的知识对我会大有裨益.我很喜欢看这类文章.

老梢公 发表于 2006-10-30 21:05

多练提高水感!

谢作明 发表于 2006-11-28 18:55

<FONT size=5>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 跟着老艄公走.</FONT>

KTW 发表于 2012-2-10 11:38

:handshake
页: [1]
查看完整版本: 游泳推进力